Crystal Structure, Thermal Behavior, and Luminescence of BaZnCl₄-II:Sm²⁺ and Comparision to BaZnCl₄-I:Sm²⁺

Claudia Wickleder¹

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Received February 26, 2001; in revised form June 6, 2001; accepted June 12, 2001 IN HONOR OF PROFESSOR PAUL HAGENMULLER ON THE OCCASION OF HIS 80TH BIRTHDAY

Slightly different reaction conditions lead to two modifications of single crystalline BaZnCl₄. The crystal structure of BaZnCl₄-II (orthorhombic, *Pbcn* (No. 60), Z = 4, a = 6.5041(9), b =15.363(3), c = 6.819(1) Å, $R_{all} = 0.0608$) consists of edge and corner sharing [BaCl₈] polyhedra with [ZnCl₄] tetrahedra filling the holes of the [BaCl₈] network. The polyhedra in BaZnCl₄-I are nearly equal but the linkage is different. Both modifications can be obtained as single phases from BaCl₂/ZnCl₂ mixtures and show no phase transitions down to 4 K. Emission spectra of both modifications doped with Sm²⁺ reveal $4f^{5}5d^{1} \rightarrow {}^{7}F_{J}$ as well as ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions. In spite of the similar surrounding of Sm²⁺ in both modifications the shift of the maximum of the $d \rightarrow f$ emission is 450 cm⁻¹, showing that small changes in the coordination polyhedra of divalent rare earths cause large changes in luminescence properties. © 2001 Elsevier Science

Key Words: tetrachlorozincates; thermal behavior; divalent lanthanides; samarium; luminescence.

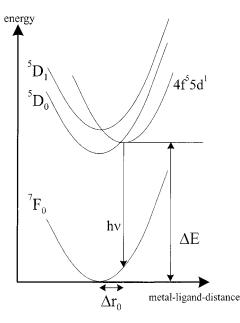
INTRODUCTION

Luminescence of divalent europium is used in some areas of application: BaMgAl₁₀O₁₇:Eu²⁺, Sr₅(PO₄)₃Cl:Eu²⁺, and Sr₂Al₆O₁₁:Eu²⁺ are applied as blue phosphors in the energy-saving three-color lamps, and BaFBr:Eu²⁺ is a well known X-ray storage phosphor (1). The efficiency of the parity allowed $4f^{n}5d^1 \rightarrow 4f^{n+1}$ transitions can be quite high. The energy, the bandwidth, and the thermal quenching of the emission depends on the position of the lowest $4f^{n}5d^1$ excited state relative to the $4f^{n+1}$ ground state. Both, the energy difference, ΔE , and the shift of the equilibrium of the metal-ligand distances, Δr_0 , are of importance (Fig. 1). These two items depend strongly on various parameters of the crystallographic site of the host lattice-like metal-ligand distance, covalency, coordination number, and site symmetry. A small site with ionic ligands causes a large crystal

237

field strength and a large crystal field splitting, resulting in a small ΔE and a low energetic emission, but Δr will be small in this case, shifting the emission to higher energy. If the covalency is small, low energetic emission is observed, known as the nephelauxetic effect (2). Other important parameters are the polarization of the ligand due to the second coordination sphere (3), and the position of the conduction band of the host lattice (4).

The exact influence of these parameters is difficult to determine. In general, changing the host lattice will change most of them. For a systematic investigation it would be advantageous to have similar host lattices with only one of the mentioned parameters changing.


The crystal structure of BaZnCl₄-I (5) and preliminary results of luminescent investigations of BaZnCl₄-I:Sm²⁺ (6) have been reported recently. It has been shown that the Sm²⁺ ions substitute only Ba²⁺ ions of the host lattice which are located on sites with the point symmetry C₂. In this work, the crystal structure of a second modification of BaZnCl₄, BaZnCl₄-II, is presented, as well as the phase behavior of the two modifications. Room temperature emission spectra of both modifications doped with Sm²⁺ ions are discussed. Emission spectra of BaZnCl₄:Sm²⁺ at lower temperature as well as excitation spectra and lifetime investigations will be reported elsewhere.

EXPERIMENTAL SECTION

Two modifications of BaZnCl₄ were prepared from the binary chlorides BaCl₂ (Merck, p.a.) and ZnCl₂ (Merck, p.a.). The educts were dried under vacuum at 150°C and sublimed at 1000 and 400°C, respectively. For the synthesis of BaZnCl₄-I the educts were heated in an evacuated silica ampoule at 600°C for 10 h followed by slow cooling (1°C/h) using the Bridgman technique. BaZnCl₄-II was obtained analogously but the maximum temperature was only 480°C. Both modifications crystallize as big colorless crystals of sizes up to $4 \times 4 \times 4$ mm³. Due to their moisture sensitivity

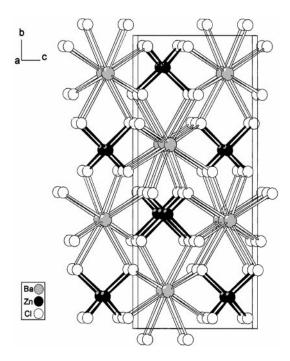
¹ Fax: 0049-(0)221-470-5083. E-mail: claudia.wickleder@uni-koeln.de.

FIG. 1. Schematic configurational coordinate diagram of Sm²⁺. ⁷*F*_J levels (J = 1-6) are omitted for clarity. The arrow downwards indicates the $d \rightarrow f$ emission energy, ΔE , the energy difference between the parabola, and Δr_0 , the difference of the equilibrium metal-ligand distance of the opposite parity states.

they have to be handled under inert conditions in an argonfilled glove box.

According to temperature-dependent powder X-ray diffraction measurements using a powder diffractometer (Stoe & Cie, Stadi P) equipped with a closed-cycle helium cryostat both modifications were single phase at room temperature. No phase transition was detected for both samples down to 40 K.

For crystal structure determinations of BaZnCl₄-II at 293 and 140 K small crystals of about 0.1 mm in diameter were mounted in glass capillaries using a polarizing microscope. The scattering intensities were collected with an imagingplate-diffractometer (Stoe & Cie) equipped with a cryostat (Oxford Instruments). Structure solution and refinement were successful in space group *Pbcn* (No. 60) using the programs SHELXS86 and SHELXL93 (7), respectively. A numerical absorption correction was applied after optimization of the crystal shape (programs X-RED and X-SHAPE (8)). The crystallographic data and the parameters of their determination are given in Tables 1–3. The crystal structure of BaZnCl₄-I was reported recently (5).


DSC/TG investigations were performed using a STA 409 thermal analyzer (Netzsch). For that purpose about 10 mg of the substances were filled in corundum containers and heated with a constant rate of 10 K/min under flowing argon. The thermal decomposition was followed from 30 up to 800°C. For the DSC data a baseline correction was applied. Characteristic points like start and end temper-

atures of the thermal effects were taken from the differentiated DSC curve following common procedures (11).

For luminescence measurements big crystals of BaZnCl₄: Sm^{2+} (0.05%) of both modifications were grown. To avoid lattice distortions as well as mixed valencies when doping Sm^{3+} into the samples followed by a reduction of the trivalent state another route was used. First, SmCl_3 was prepared from Sm_2O_3 (99.999%, alpha) using the ammonium halide route (12). SmCl_2 was obtained by the reduction of SmCl_3 with Sm metal (99.99%, alpha) in a molar ratio of 2:1 at 900°C in a tantalum container. The purity of the product was checked by powder diffraction meaurements. For the synthesis of $\text{BaZnCl}_4:\text{Sm}^{2+}$ in tantalum containers, SmCl_2 was added to the binary chlorides in

FIG. 2. Linkage of the $[BaCl_8]$ polyhedra in the crystal structure of $BaZnCl_4$ -II (top) and $BaZnCl_4$ -I (bottom). Bonds to Cl^- ions involved in edge sharing are emphasized in black.

FIG. 3. Crystal structure of $BaZnCl_4$ -II viewed along [100]. $Zn^{2+}-Cl^{-}$ bonds are shown in black.

a molar ratio of 0.05%. $BaZnCl_4$ -I:Sm²⁺ is weak redbrownish, while $BaZnCl_4$ -II:Sm²⁺ is slightly pink. Due to their moisture sensitivity, the specimens have to be sealed in silica ampoules.

Emission spectra at room temperature were recorded using a frequency-doubled Nd:YAG laser (Spectra Physics, GCR 11, $\lambda = 532$ nm) as excitation source. The emission signal was focused on the entrance slit of a 0.27-m single monochromator and detected using a photomultiplier (Hamamatsu, R2949), a preamplifier (Stanford, SR445), and a photon counting system (Stanford, SR400). The spectra were corrected for photomultiplier sensitivity.

RESULTS AND DISCUSSION

Crystal Structures

BaZnCl₄-II crystallizes in the orthorhombic space group *Pbcn* and is isotypic to UCrO₄ (13). The crystallographic data at room temperature as well as at 140 K are given in Tables 1 to 3. The structure consists of [BaCl₈] polyhedra which can be grasped as trigon dodecahedra (point symmetry C_2). The Ba²⁺-Cl⁻ distances range from 3.16 to 3.20 Å (Table 3) with four ligands being slightly closer to the Ba²⁺ ion (3.16 Å) than the other two (3.18 and 3.20 Å, respectively). The [BaCl₈] polyhedra are linked in two different ways: They share two common edges forming zig-zag chains along [001], and four common vertices connect the chains to a three-dimensional network (Fig. 2).

The Zn^{2+} ions are surrounded by four Cl^- ions with distances between 2.27 and 2.30 Å (Table 3) in the form of a tetrahedron. The angles within the tetrahedron are quite distorted. The tetrahedra fill the empty voids in the [BaCl₈] polyhedra network in such a way that each Cl^- ion connects to one Zn^{2+} and two Ba^{2+} ions (Figs. 2 and 3). Six [ZnCl₄] polyhedra are attached to one [BaCl₈] polyhedron via common corners; an additional polyhedron is linked via a common edge.

The coordination polyhedra of BaZnCl₄-I are very similar, but the linkage is different (5) (Fig. 2). There are also [BaCl₈] polyhedra in the form of trigonal dodecahedra with four different Ba²⁺-Cl⁻ distances (3.140-3.190 Å, also point symmetry C_2) which are only a little smaller than in

 TABLE 1

 Data Collection Parameters and Crystallographic Data for BaZnCl₄-II (1, 293 K; 2, 140 K)

	1	2	
Lattice parameters (Å)	a = 6.5041(9)	a = 6.490(1)	
	b = 15.363(3)	b = 15.374(2)	
	c = 6.819(1)	c = 6.824(1)	
Molar volume (cm ³ /mol)	102.6	102.5	
No. of formula units (Z)		4	
Crystal system	Orthorhombic		
Space group	<i>Pbcn</i> (No. 60)		
Diffractometer	Stoe IPDS		
Radiation	MoK α (graphite monochromator, $\lambda = 0.7107$ Å)		
Data range	$5^{\circ} < 2\theta < 56^{\circ}$	$4^\circ < 2\theta < 56^\circ$	
Index range	$-8 \le h \le 8$	$-8 \le h \le 8$	
	$-20 \le k \le 20$	$-19 \le k \le 19$	
	$-8 \le l \le 9$	$-8 \le l \le 8$	
Rotation angle range; φ -increment	$0^{\circ} < \phi < 250^{\circ}; \Delta \phi = 2^{\circ}$	$0^{\circ} < \phi < 200^{\circ}; \Delta \phi = 2^{\circ}$	
No. of images	125	100	
Exposure time	5 min	4 min	
Detector distance	60 mm	60 mm	
Data corrections	Polarization/Lorentz (8)		
Absorption corrections	Numerical, after crysta	al shape optimization (8)	
μ (cm ⁻¹)	107.0	107.0	
No. of collected reflections	5764	5898	
No. of unique reflections	828	825	
No. of reflections with $I_0 > 2\sigma(I)$	559	595	
R _{int}	0.1125	0.0763	
Structure determination and refinement	SHELXS-86 and SHELXL-93 (7)		
Scattering factors	Intern. Tables, Vol. A (9)		
Goodness of fit	0.899	0.922	
R1; wR2 $I_0 > 2\theta(I)$	0.0350; 0.0702	0.0328; 0.0781	
R1; wR2 (all data)	0.0608; 0.0764	0.0507; 0.0842	
Max/min final electron density	0.984/ - 1.680	0.959/ - 1.047	
CSD No.	411951	411952	

 TABLE 2

 Positional Parameters and Equivalent Isotropic Displacement

 Parameters for BaZnCl₄-II at 293 and 140 K

Atom	Site	x/a	y/b	z/c	$U_{\rm eq} \times 10^{-5} ({\rm \AA}^2)$
Ва	4 <i>c</i>	0	0.12940(3)	$\frac{1}{4}$	16.2(2)
Ba	4c	0	0.12930(3)	$\frac{1}{4}$	12.8(2)
Zn	4c	$\frac{1}{2}$	0.8908(1)	$\frac{1}{4}$	18.1(2)
Zn	4c	$\frac{1}{2}$	0.89066(7)	$\frac{1}{4}$	13.6(2)
Cl1	8d	0.2446(3)	0.9631(1)	0.4084(2)	25.1(4)
Cl1	8d	0.2449(3)	0.9632(1)	0.4085(2)	18.2(3)
Cl2	8d	0.1465(3)	0.2996(1)	0.0245(3)	27.7(4)
Cl2	8 <i>d</i>	0.1468(3)	0.2992(1)	0.0234(2)	20.2(4)

Note. $U_{eq} = \frac{1}{3} [U_{11} + U_{22} + U_{33}]$ (10).

BaZnCl₄-II. The $[ZnCl_4]$ tetrahedron shows also two different distances $Zn^{2+}-Cl^-$. Analogously to BaZnCl₄-II, the [BaCl₈] polyhedra are connected via two common edges and four common vertices, but here the edge-building Cl⁻ ions are opposite and not neighboring as in BaZnCl₄-II. Additionally, the [BaCl₈] polyhedra are connected via two common edges and four common corners to six different [ZnCl₄] tetrahedra.

Thermal Investigations

Two modifications of BaZnCl₄ can be synthesized which are pure phase according to X-ray powder diffraction measurements. Both modifications are obtained from the binary chlorides, BaZnCl₄-I at 600°C and BaZnCl₄-II at 480°C. No phase transition was detected when cooling down to 40 K from powder diffraction measurements. Additionally, luminescence measurements at 4 K prove the phase stability of both modifications. In 1914 Sandonnini presented a phase diagram of BaCl₂ and ZnCl₂ which shows only one incongruent melting modification of the composition BaZnCl₄ (14). However, no phase transition had been

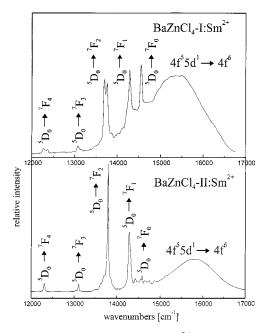
 TABLE 3

 Selected Internuclear Distances (Å) and Angles (°) for BaZnCl₄-II at 293 and 140 K

Ba-Cl ₂ $(2 \times)$	3.159(2)	Cl ₁ -Zn-Cl ₁	121.4(1)
$Ba-Cl_2(2\times)$	3.153(2)	Cl_1 – Zn – Cl_1	121.2(1)
Ba-Cl ₁ $(2 \times)$	3.159(2)	Cl ₂ -Zn-Cl ₁	106.5(1)
$Ba-Cl_1(2\times)$	3.159(2)	Cl_2 -Zn- Cl_1	106.4 (1)
Ba-Cl ₂ $(2 \times)$	3.179(2)	Cl_2 -Zn- Cl_1	108.3(1)
$Ba-Cl_2(2\times)$	3.182(2)	Cl_2 -Zn- Cl_1	108.6(1)
Ba-Cl ₁ $(2 \times)$	3.197(2)	Cl ₂ -Zn-Cl ₂	104.5(1)
$Ba-Cl_1 (2 \times)$	3.197(2)	Cl_2 – Zn – Cl_2	104.5(1)
$Zn-Cl_1(2\times)$	2.272(2)		
$Zn-Cl_1(2\times)$	2.270(2)		
Zn–Cl ₂ $(2 \times)$	2.288(2)		
$Zn-Cl_2(2\times)$	2.297(2)		

detected, so this phase diagram is not suitable to explain the results presented in this work.

To investigate this unusual phase behavior, DSC/TG investigations were performed. Measurements of a sample of pure ZnCl_2 show a melting peak with a maximum at 325° C and a boiling peak, which starts at 535° C. This is not a boiling point for standard conditions, because the measurement was carried out under flowing argon. However, the conditions during the synthesis are also not standard conditions.


Thermal investigations of BaZnCl₄-II show the stability of the compound up to 468°C. Above that temperature, BaZnCl₄-II starts to melt. The melting peak has its maximum at 479°C. During the cooling process down to room temperature only the solidification peak with an onset at 460°C was detected. DSC/TG measurements of BaZnCl₄-I showed a different behavior. The same melting and solidification signals are found, but a single peak which starts at 366°C was observed additionally in the heating curve which did not appear upon cooling.

According to the DSC/TG results the following model of the phase behavior of BaZnCl₄ is possible: In contrast to the phase diagram (14) there exist two modifications of BaZnCl₄. BaZnCl₄-I, which is the thermodynamically stable modification at lower temperature, undergoes a phase transition to BaZnCl₄-II at 366°C. Upon cooling BaZnCl₄-II remains metastable, so that no phase transition to BaZnCl₄-I occurs. BaZnCl₄-II can be prepared from a 1:1 mixture of the binary chlorides. Because of the metastability it is stable down to low temperatures. If the temperature during synthesis exceeds 535°C some amount of $ZnCl_2$ (depending on the size of and the pressure inside the ampoule) evaporates and disappears from the reaction mixture. Now there is some excess BaCl₂ in the melt, so that the system can bypass the point of phase transition and BaZnCl₄-I will crystallize as a single modification. The last drops of the melt will yield BaCl₂ and BaZnCl₄-I, solidifying at the top of the grown crystals and are not taken as samples for luminescence measurements.

In contrast to the above described preparation methods $BaZnCl_4$ -I can be obtained at lower temperature. If mixtures of the educts in a molar ratio of 6:4 ($BaCl_2:ZnCl_2$) are heated up to only 470°C, $BaZnCl_4$ -I together with $BaCl_2$ was detected from powder diffraction patterns. This may be seen as a proof for the suggested mechanism.

Luminescence of $BaZnCl_4$ -I:Sm²⁺ and $BaZnCl_4$ -II:Sm²⁺

Because of the ionic radii of the divalent ions, 1.56 Å for Ba^{2+} and 1.41 Å for Sm^{2+} in eightfold coordination and 0.74 Å for Zn^{2+} in fourfold coordination (15), at least at low doping concentrations the occupation of Sm^{2+} of the Ba^{2+} sites in BaZnCl₄ is much more probable than the occupation of the Zn^{2+} sites. For BaZnCl₄-I: M^{2+} (M = Eu, Sm,

FIG. 4. Emission spectra of BaZnCl₄-I:Sm²⁺ and BaZnCl₄-II:Sm²⁺ at room temperature upon excitation at 18796 cm⁻¹. ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions are assigned. Note the difference of the $d \rightarrow f$ emission band between the two modifications.

Tm) (6) and BaZnCl₄-II: M^{2^+} (M = Eu, Sm) luminescence measurements at 4 K show clearly that only one crystallographic site is occupied by M^{2^+} . The number of crystal field levels of the ⁷F_J states observed in the emission spectra of the Sm²⁺ doped compounds fit the site symmetry C₂. Because Ba²⁺ as well as Zn²⁺ ions occupy crystallographic sites with this symmetry the Sm²⁺ position cannot clearly determined.

The coordination number of eight and the point symmetry C_2 for the Ba²⁺ sites is equal in both modifications. The Ba²⁺-Cl⁻ distances are approximately 1 pm longer in BaZnCl₄-II. The average distances are 3.159 Å (BaZnCl₄-I) (5) and 3.173 Å (BaZnCl₄-II) (Table 3), respectively. Thus, BaZnCl₄ is a very suitable system for studying the difference of the $d \rightarrow f$ emission of divalent lanthanide ions in very similar host lattices.

Figure 4 depicts the room temperature emission spectra of BaZnCl₄-I:Sm²⁺ (6) and BaZnCl₄-II:Sm²⁺ after $4f^6 \rightarrow 4f^55d^1$ excitation. In both spectra broad bands as well as sharp transitions are visible which can be assigned to $4f^55d^1 \rightarrow {}^7F_J$ and ${}^5D_0 \rightarrow {}^7F_J$ emissions of Sm²⁺ (Figs. 1 and 4). As expected, the ${}^5D_0 \rightarrow {}^7F_J$ emissions are at comparable energies in both modifications, while the $4f^55d^1 \rightarrow {}^7F_J$ emission of BaZnCl₄-II:Sm²⁺ shows a blue shift when compared to BaZnCl₄-I:Sm²⁺. The maxima of the $d \rightarrow f$ emission bands are located at 15,350 cm⁻¹ with $\Delta_{1/2} = 1450$ cm⁻¹ (full width at half maximum, FWHM) (BaZnCl₄-I) and at 15,800 cm⁻¹ with $\Delta_{1/2} = 1200$ cm⁻¹ (BaZnCl₄-II). This shift of the maxima of 450 cm⁻¹ is visible by eye after UV excitation. BaZnCl₄-I:Sm²⁺ shows a deep red luminescence while the luminescence of BaZnCl₄-II: Sm²⁺ is bright pink. The increasing Ba²⁺-Cl⁻ distances in BaZnCl₄-II:Sm²⁺ cause a decreasing crystal field splitting of the *d*-levels of Sm²⁺ so that the lowest lying *d*-orbital is located at higher energy. Note that a very small change in the Ba²⁺-Cl⁻ distances and a small change of the Cl-Ba-Cl angles lead to a drastic change in the energy of the $d \rightarrow f$ emission bands.

The simultaneous appearance of $f \rightarrow f$ and $d \rightarrow f$ emission shows that the lowest $4f^{5}5d^{1}$ level is located at higher energy than the ${}^{5}D_{0}$ level. Because of thermal occupation of the $4f^{5}5d^{1}$ level fast parity allowed $d \rightarrow f$ emission is visible. Due to the position of the lowest $4f^{5}5d^{1}$ level relative to the ${}^{5}D_{0}$ level the thermal occupation in BaZnCl₄-II:Sm²⁺ is much lower as in BaZnCl₄-I:Sm²⁺, resulting in a weaker $d \rightarrow f$ emission. Integration yields an intensity of $d \rightarrow f$ bands relative to the $f \rightarrow f$ peaks of 85% for BaZnCl₄-I:Sm²⁺ and 68% for BaZnCl₄-II:Sm²⁺. At lower temperature only $f \rightarrow f$ transitions are visible in both modifications. The exact positions of the $4f^{5}5d^{1}$ levels relative to the ${}^{5}D_{0}$ levels will be determined from temperature-dependent measurements.

The assignments of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions are also depicted in Fig. 4. They are similar to the emission peaks of the isoelectronic Eu³⁺ but due to the lower nuclear charge they are located at lower energy.

In opposite to BaZnCl₄-II:Sm²⁺, BaZnCl₄-I:Sm²⁺ shows very strong ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ emission, while ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ is of comparable intensity. In Eu³⁺-doped compounds the ${}^{5}D_{0} \leftrightarrow {}^{7}F_{0}$ transition is very weak and strictly forbidden by electric and magnetic dipole selection rules. Some intensity is gained by J mixing (16). The ${}^{5}D_{0} \leftrightarrow {}^{7}F_{1}$ transition in Eu³⁺ and Sm²⁺ is forbidden by both Judd-Ofelt and Wybourne-Downer mechanisms, and its appearance in the spectra is due to an allowed magnetic dipole process (17). Therefore, the strength of this transition is nearly independent of the energy separation to higher opposite parity states and also of the crystal field strength. The squared matrix elements are nearly equal in magnitude, so this transition is suitable for comparing the spectra of Sm²⁺ in different host materials (17). In contrast, the intensity of the ${}^{5}D_{0} \leftrightarrow {}^{7}F_{0}$ transition in Sm²⁺ depends strongly on the position of the odd-parity $4f^{5}5d^{1}$ states. The large increase of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ emission in BaZnCl₄-I:Sm²⁺ might be due to the close position of the odd parity states relative to ${}^{5}D_{0}$ and ${}^{7}F_{0}$. The integrated intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission is similar in both spectra but the relative intensity of the individual crystal field lines is different as is observable at low temperature. This will be discussed elsewhere.

ACKNOWLEDGMENT

I am indebted to Professor Dr. G. Meyer for his generous support. Tables of crystal data and structure refinement, atomic coordinates and equivalent displacement parameters, bond lengths and angles, as well as anisotropic displacement parameters are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (crysdata@FIZ-Karlsruhe.de) by giving the Deposition Numbers CSD.411951 and 411952.

REFERENCES

- G. Blasse and B. C. Grabmaier, "Luminescent Materials," Springer-Verlag, Berlin, 1994.
- 2. G. Blasse, J. Solid State Chem. 4, 52 (1972).
- 3. G. Blasse, Eur. J. Solid State Inorg. Chem. 33, 175 (1996).
- 4. G. Blasse, Photochem. Photobiol. 52, 417 (1990).
- C. Wickleder, S. Masselmann, and G. Meyer, Z. Anorg. Allg. Chem. 625, 507 (1999).
- 6. C. Wickleder, J. Alloys Compds. 300, 193 (2000).
- 7. G. M. Sheldrick, "SHELXS86 and SHELXL93: Programs for Solution and Refinement of Crystal Structures." Göttingen, 1986/1993.

- (a) Fa. STOE & Cie, "X-RED 1.07: Data Reduction for STADI4 and IPDS." Darmstadt, 1996. (b) Fa. STOE & Cie, "X-SHAPE 1.01: Crystal Optimisation for Numerical Absorption Correction." Darmstadt, 1996.
- 9. Th. Hahn (Ed.), "International Tables for Crystallography." Vol. A. Reidel, Dordrecht/Boston, 1983.
- 10. R. X. Fischer and E. Tillmanns, Acta Crystallogr. C 44, 775 (1988).
- W. F. Hemminger and H. K. Cammenga, "Methoden der Thermischen Analyse." Springer-Verlag, New York, 1989.
- 12. G. Meyer, Inorg. Synth. 22, 1 (1983).
- M. Bacmann, E. F. Bertraut, and G. Bassi, Bull. Soc. Franc. Mineral Cristallogr. 88, 214 (1965).
- 14. C. Sandonnini, Gazz. Chim. Ital. 44I, 353 (1914).
- R. D. Shannon and C. T. Prettwitt, *Acta Crystallogr. B* 25, 925 (1969);
 R. D. Shannon, *Acta Crystallogr. A* 32, 751 (1976).
- B. Henderson and G. F. Imbusch, "Optical Spectroscopy of Inorganic Solids." Clarendon Press, Oxford, 1989.
- 17. M. Tanaka and T. Kushida, Phys. Rev. B 53, 588 (1996).